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Abstract. The potential of a one-dimensional lateral superlattice screened by two-dimensional
electron gas located in close proximity is found. The periodic potential created by the superlattice
affects the kinetic and optical properties of the electron system. The magnetoreflectance, Faraday
rotation angle and ellipticity of the reflected electromagnetic field are calculated.

1. Introduction

One of the possible ways to fabricate a short-period lateral superlattice (SL) is via segregation
of charged impurities on vicinal planes of crystals (see figure 1). The terraced interface of a
heterojunction is populated by donors nonuniformly. The donors tend to aggregate at edges
of the terraces forming chains of positive charges. As a result, 2D electrons residing close
to the interface ‘see’ a one-dimensional periodic poteritiat) with perioda determined

by the angle of misorientation of the vicinal plane (see, e.g., [1-3]). Transport properties of

2D electron gas with a 1D lateral SL have been widely discussed in the literature. The most
remarkable effect is the occurrence of Weiss oscillations of magnetoresistivity [4—8]. The

Figure 1. Two-dimensional electron gas at a vicinal surface: +: charged dorordectrons.
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high-frequency conductivity of a lateral SL has been investigated in [9] (see also [10]). In the
theoretical papers cited above, the potentidk) is represented by its Fourier components
Vv which are just input parameters of the theory. In the present paper, we first calculate the
potentialV (x), taking into account the screening effects in 2D electron gas. Then we consider
magneto-optical phenomena in a 1D lateral SL.

2. The screened potential of a 1D SL

Consider a periodic set of charged filaments parallel tothgis and lying in the plane = 0.

The linear charge density on each filameng isin the planez = —A, we have a strongly

degenerate 2D electron gas. The problem is that of finding the self-consistent pdténjial

and surface density of electromgr) in the planez = —A. Of course, we realize that this is an

idealized formulation of the problem. Inreality there are inevitable charge-density fluctuations,

so¢ is not constant and neither are all filaments identical. Infact, we look for a macroscopically

averaged potentidl (x). The above-mentioned fluctuations contribute to electron scattering.
Note, first of all, that in the classical limit:(— 0) one can neglect the Thomas—Fermi

screening radius which, for degenerate 2D electrons, iajugt whereug is the effective Bohr

radiusaj = h%e /m*e? ande is the dielectric permeability. Then the problem formulated above

can be solved straightforwardly: the plane= —A is equipotentialV (x) = constant= 0

and the surface charge densityx) can be found by the mirror image method. For a single

filament placed at = na, z = 0 (n is an integer), we get

& A

= - 1
on(x) T (x —na)?2+ A2 @)
Then the total surface charge density is jy$f o,
sinh(27 A /a
o (x) = § h( /a) )

2a cost(r A Ja) — cof(nx/a)

Of course, the superposition princip}e, o, is applicable, because we deal with linear
equations of electrostatics. The electrostatic problem Witite screening is, generally
speaking, nonlinear, since the charge density depends on the potential. However, a lucky
exception is the Thomas—Fermi limit for the 2D electron gas. Indeed, the surface density of
2D electronsi(r) is given by

_ d2p P2
n(r) =2 2y f |:2m* - ew(r)] 3)

where f is the Fermi occupation numbes(r) is the electrostatic potentiad,is the absolute
value of the electron charge apds the 2D momentum. Thus, fa@t — 0

* + *
nr =" n [1 +exp(“ T“")] ~ I it ep] 9 [+ epm)] (4)
whered (1) is the Heaviside step function apdis the chemical potential. The potentiair)
consists of two parts: the induced potentigly created by redistribution of 2D electrons and
the external potentiabey; resulting from the outer charges. If this part contains no repulsion
contributions, the density(r) is nonzero everywhere and, henge,eg is always positive and
© equals 1 for the entire space. Thus, the Thomas—Fermi equation formally becomes linear.
The Green function of this equation for the 2D electron gas is known [11]. The Fourier
component of the potential created by a point chadgelaced at a distanca above the 2D
degenerate electron gas is given by
2w Qe kA

U(k):W K =

®)

SEN
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Correspondingly, for a charged filament we have
p(x,z=—A) = —2te“ Re{e ™ Ei[x(x —iA)]} (6)

where E{z) is the exponential integral. After performing a summation over all the filaments
arranged in the periodic set with periad we arrive eventually at the formula for the SL
potential and surface charge density of 2D electrons:

V) = né /"0 dz e *sinh[2t (A +z/k)/a]
~ ka Jo cosh[2r(A +z/k)/a] — cof(nx/a)

()

o(x) = %vu). 8)

At k — oo, we immediately come back to the classical-limit equation (2). The quantum
corrections are given by thedependent terms in equation (7). The Fourier componéfits

of the potential (7) can be calculated analytically. Fé? we find
2né exp(—2x Alr|/a) )
ka 1+2t|r|/ka

We see from equation (9) that for a short-period SL, the quantum corrections may be
rather important: the parameter Z&a = maj/a for GaAs becomes unity for a period

a ~ 300 A. The depth of modulation of the lateral potential depends on the spacer thickness
A exponentially; a rather simple estimate can be made in the nearly classicaldimit1:

Viin _ ani? (E) (10)

max a

Vv —

3. Dynamic conductivity of the 1D SL

In this section, expressions for components of the dynamic magnetoconductivity tensor
6 (w, B) of a 1D lateral superlattice are derivedt. This tensor describes the response of a
system placed in an external magnetic fid@dto an alternating electric field of frequency
. Our derivation generalizes the approach developed in [7] to the case of an external
alternating electric field and an arbitrary periodic potential. It is based on a solution of the
classical Boltzmann kinetic equation for 2D electrons subject to a laterally modulating potential
V (x), a constant uniform magnetic fiel (directed along the-axis) and a microwave field
E(t) = Re(E,e ') (E, is the complex amplitude of the electromagnetic field).

The linearized kinetic equation for a degenerdte<{ 0 K) electron system reads

A 0 ov . ax 1 2T de .
Lox = —+ [ — + —+-(1- — ) - ®
X |:v(x) COSp ™ (Bx sing a)c) do T2 ( /(; iw | x
= —eE,uv(x). (1D

Here x (x, ) is a nonequilibrium correction linear iR, to the distribution function at the
point x with the direction of the velocity (momentum) (v = (CoSp, Sing)), v(x) =
ves/1 +eV (x)/EE is the magnitude of the electron velocity(is the Fermi velocity),
wc = eB/m*c is the cyclotron frequency andis the relaxation time (as in [7}, is assumed
to be constant). The complex amplitude of the current is expressed in tepmassof

Jo = —eN(xuv) 12)

t Strictly speaking, the lateral potential depends on the magnetic field throughdependence of the screening

(see, e.g., [12]). However, this dependence becomes important only for sufficiently strong fields when the density of
states differs essentially from that of free-electron gas. The effects that we consider here occur in the regime of much
weaker fields.
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whereN = m/mh? is the density of states of an unmodulated 2D electron gas. The angular
brackets mean averaging oveandg:

r d dx
(...)=/ 2_‘p/_(...)_ (13)
0 JT a
Now we introduce (instead gf,) a new unknown functiot¥,, as follows:
©)
2v(x)u; 0, ; (@, B)
w0 = — + Fwi _ Ea) 14
=X [ : ] k., (14)

wherea,.f(;’ (w, B) = aond; ;/(n? + y?) is the unperturbed (i.e. &t(x) = 0) dynamic (Drude-
type) magnetoconductivity tensor of the 2D systegi= Nse?t/m* is the static conductivity
of the 2D electron gasys = N Ef is the surface electron densit), = d,, = 1, dy, =
—dyy =y/n,y =wcr andy =1—iwrt.

The first term in equation (14) givegf(;) (w, B). The second leads to a correction assoc-
iated withV (x):

Ao j(w, B) = Z(uivok)a,f?;. (15)
k

It is evident thatF,; = F,é,; for a 1D lateral SL. Substituting (14) into (11) we obtain the
following equation forF,,:

A iBV(x)

LoF,=— 16
EF 0x ( )
Using equation (11), the expression iw; ; can be readily transformed into
1 v
Ao; ;= —oi(f)aqu) F—). a7)
: Nse J 0x

We assume the lateral potenti#kx) to be weak. This allows solving equation (16)
perturbatively, and, to first order ivi, the functionF is determined by
e aV(x)

18
EF 0x ( )

LOF, = -

with ﬁg» =L, ] v—o- From equation (18) we can find the following equation for spatial Fourier
components of the functiofi(x, ¢) (F = Y52 __ F" explirgx), g = 2n/a):

r=—00
irgetvV®
Er

) QF™ N
irgl cosp F" + w 5 +nF" — F0O) = (19)
®

where the operatiofi - -) means averaging over, and! = vt is the free path length. Solving
equation (19), we have
FO - irgleV®™  S(rque/wc)
vrEF  1— S(rqur/wc)

00 J2?
s =n Y 2 (21)

242
n=—oo YT EN

(20)

HereJ,(z) are Bessel functions. Now we substitute (20) into (17) and come finally to

oon { nd;d,;q?12 i 21eVOPS(rque/we) } 22)

0ij(w, B) = 5——\di,j —
! n2+y2 | 2mP+y?) &~ EE 1-S(rque/wo)
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Using equation (22), we can easily verify thatat 0 the expression fou; ; (6 = 671(0, B)
is the static magnetoresistivity) reduces to the result obtained in [7R At0, equation (22)
can be somewhat simplified:

g’ & LleVO2 C(rql)

- wy 23
2n?2 EZ 1-C@rql) ™" (23)

r=—00

1
o0i,j(w) =09 ;Si,j -

where

C@t)=1/v/n?+12

4. Magnetoreflectance and the Faraday effect

Let us consider the manifestation of the lateral modulation of the 2D electron gas in reflection
from the system under discussion. We solve the electrodynamic problem in which the 2D
electron system with a spacer is modelled Bylike layer on a semi-infinite dielectric substrate
with refractive index:. The fields are subject to corresponding boundary conditions and we
can easily arrive at formulae for the reflectariteFaraday rotation angke and ellipticity 8

in terms of the components of the dynamic conductivity tensor. For normal incidence of the
wave polarized along the-axis we have

R — |(n+ 1+Eyy)(1_n + Zxx) - E§x|2+4|2yx|2
' |(n+1+T)(n+1+3,,) + 3222

(24)

¢l =2 (25)

pIN
Re J
n+1+3,)1-n—-=x,) - 22

Yy
8H =2Im > . (26)
n+1+Z,)1—n—3%,,) — E)Z,X

Here we introduced the notatidly ; = 4w o; ;/c. Inthe case of an incident wave polarized
along they-axis, the expressions f&, and¢, can be obtained from (24) and (24) by making
the interchange < y.

The results of numerical calculations®findg are shown in figures 2-5. The calculations
were performed using the following parameters:

w=5x100cm?V1ist(r =19p9y

m* = 0.067mg

Ns=4x 10" cm™2 (Ef = 1429 meV, vg = 2.74x 10’ cm s'1)
ag =10.12 nm

a=32nm

A=T75A

£ = 2 x 10° electrons cm?

n = 3.58

AR and AR, (AR = R — R© is the lateral correction to the reflectan®é® of an
unmodulated electron gas) are plotte@at 0 as functions of frequeneyin figure 2. For a-
polarized incident wave we have the conventional monotonic Drude beha¥iotr R (w)
(AR, is negligibly small), but for the-polarized case the effect of the lateral SL results in a
AR (w) curve with a maximum abr ~ 1.
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Figure 2. The frequency dependence of the reflectand® &t 0. In this and the following figures,
full and broken curves correspondAR; (AR,) andAR = R — R©, respectively.
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Figure 3. The magnetic field dependence afR(B) for wt = 0.4. Ticks indicate extremum

positions of Weiss oscillations in accordance with the relatibta 2= (Nw — 1/4)y, Nw =
1,2,3,....

Figures 3-5 demonstrate the magnetic field dependence of the reflection coefficients for
three different frequencies. The curves in figur@3 (& 1) show oscillatory behaviour. The
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Figure 4. The magnetoreflectance (as in figure 3)dar = 4. Full ticks indicate the positions of
Weiss oscillations; broken ticks correspond to CR harmonigd/{ = o, Nc = 1,2, ...).
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Figure 5. Reflectance versuB for wt = 40. Full ticks indicate the positions of dynamic Weiss
oscillations following from (27); broken ticks are as in figure 4.

positions ofR; (B) maxima (and, correspondingly, (B)) minima) coincide with the positions
of static-magnetoresistivity,,(B) minima in Weiss oscillations. At high frequencies,



10482 AV Chaplik aml L | Magarill

1 € wt K wgt, Wherewe = 2rve/a (for the chosen parametersgt = 72.4), we
have beats (figure 4): the envelope function associated with the cyclotron resonance (CR) and
its harmonics modulates the Weiss oscillations.

Figure 5 plotsR(B) for wt = 40 (i.e., atw < wc). At the given frequency the CR

~

harmonics are modulated by the envelope function with minima obeying the relation

1
ZEq)(i) _ wC(NdW _ _> @7)
a Wer 4

where® (x) = /1 — x2—x arctan(1/x? — 1), Ngw = 1, 2, . . .. Here we have a manifestation

of the so-called dynamic Weiss oscillations. The possibility of observing of Weiss-type
oscillations in a dynamic regime was predicted in [9]. &t> w¢, only CR harmonics
with an exponential envelope function are left (no Weiss oscillations occur).

Similar oscillatory behaviour due to the periodic lateral potential can also be observed in
other magneto-optical quantities, such as the transmittance and Faraday rotation angle. As
an example, figure 6 shows tledependence of the Faraday rotation angle and ellipticity in
a reflected electromagnetic wave. On the scale adopted, the results for the two polarizations
coincide very nicely.

0.101

0.08+
g

0.06

0.00 A A NN\ /\

Ad

-0.06

Figure 6. The magnetic field dependence of the Faraday rotation axgland ellipticity As for
wt =4.

In conclusion, we report an exact analytical solution of the Thomas—Fermi electrostatic
problem for a 2D electron gas in a 1D lateral superlattice. The manifestations of the SL
potential in the magnetoreflectance and Faraday effect are considered. In both cases the
oscillatory behaviour of the observable values is established.
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