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Abstract. The potential of a one-dimensional lateral superlattice screened by two-dimensional
electron gas located in close proximity is found. The periodic potential created by the superlattice
affects the kinetic and optical properties of the electron system. The magnetoreflectance, Faraday
rotation angle and ellipticity of the reflected electromagnetic field are calculated.

1. Introduction

One of the possible ways to fabricate a short-period lateral superlattice (SL) is via segregation
of charged impurities on vicinal planes of crystals (see figure 1). The terraced interface of a
heterojunction is populated by donors nonuniformly. The donors tend to aggregate at edges
of the terraces forming chains of positive charges. As a result, 2D electrons residing close
to the interface ‘see’ a one-dimensional periodic potentialV (x) with perioda determined
by the angle of misorientation of the vicinal plane (see, e.g., [1–3]). Transport properties of
2D electron gas with a 1D lateral SL have been widely discussed in the literature. The most
remarkable effect is the occurrence of Weiss oscillations of magnetoresistivity [4–8]. The

+
+

+
+

+

+
+

+
+

+

+
+

+
+

+

+
+

+
+

+

y

x

Figure 1. Two-dimensional electron gas at a vicinal surface: +: charged donors;−: electrons.
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high-frequency conductivity of a lateral SL has been investigated in [9] (see also [10]). In the
theoretical papers cited above, the potentialV (x) is represented by its Fourier components
V (r) which are just input parameters of the theory. In the present paper, we first calculate the
potentialV (x), taking into account the screening effects in 2D electron gas. Then we consider
magneto-optical phenomena in a 1D lateral SL.

2. The screened potential of a 1D SL

Consider a periodic set of charged filaments parallel to they-axis and lying in the planez = 0.
The linear charge density on each filament isξ . In the planez = −1, we have a strongly
degenerate 2D electron gas. The problem is that of finding the self-consistent potentialV (x)

and surface density of electronsσ(x) in the planez = −1. Of course, we realize that this is an
idealized formulation of the problem. In reality there are inevitable charge-density fluctuations,
soξ is not constant and neither are all filaments identical. In fact, we look for a macroscopically
averaged potentialV (x). The above-mentioned fluctuations contribute to electron scattering.

Note, first of all, that in the classical limit (¯h → 0) one can neglect the Thomas–Fermi
screening radius which, for degenerate 2D electrons, is justa∗

0/2, wherea∗
0 is the effective Bohr

radiusa∗
0 = h̄2ε/m∗e2 andε is the dielectric permeability. Then the problem formulated above

can be solved straightforwardly: the planez = −1 is equipotential,V (x) = constant= 0
and the surface charge densityσ(x) can be found by the mirror image method. For a single
filament placed atx = na, z = 0 (n is an integer), we get

σn(x) = ξ

π

1

(x − na)2 + 12
. (1)

Then the total surface charge density is just
∑

n σn:

σ(x) = ξ

2a

sinh(2π1/a)

cosh2(π1/a) − cos2(πx/a)
. (2)

Of course, the superposition principle
∑

n σn is applicable, because we deal with linear
equations of electrostatics. The electrostatic problem withfinite screening is, generally
speaking, nonlinear, since the charge density depends on the potential. However, a lucky
exception is the Thomas–Fermi limit for the 2D electron gas. Indeed, the surface density of
2D electronsn(r) is given by

n(r) = 2
∫

d2p

(2πh̄)2
f

[
p2

2m∗ − eϕ(r)

]
(3)

wheref is the Fermi occupation number,ϕ(r) is the electrostatic potential,e is the absolute
value of the electron charge andp is the 2D momentum. Thus, forT → 0

n(r) = m∗T
πh̄2 ln

[
1 + exp

(
µ + eϕ

T

)]
→ m∗

πh̄2 [µ + eϕ(r)] ϑ [µ + eϕ(r)] (4)

whereϑ(t) is the Heaviside step function andµ is the chemical potential. The potentialϕ(r)

consists of two parts: the induced potentialϕind created by redistribution of 2D electrons and
the external potentialϕext resulting from the outer charges. If this part contains no repulsion
contributions, the densityn(r) is nonzero everywhere and, hence,µ+eϕ is always positive and
ϑ equals 1 for the entire space. Thus, the Thomas–Fermi equation formally becomes linear.

The Green function of this equation for the 2D electron gas is known [11]. The Fourier
component of the potential created by a point chargeQ placed at a distance1 above the 2D
degenerate electron gas is given by

v(k) = 2πQe−k1

k + κ
κ = 2

a∗
0

. (5)
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Correspondingly, for a charged filament we have

ϕ(x, z = −1) = −2ξeκ1 Re
{
e−iκx Ei[κ(x − i1)]

}
(6)

where Ei(t) is the exponential integral. After performing a summation over all the filaments
arranged in the periodic set with perioda, we arrive eventually at the formula for the SL
potential and surface charge density of 2D electrons:

V (x) = πξ

κa

∫ ∞

0
dz

e−z sinh[2π(1 + z/κ)/a]

cosh[2π(1 + z/κ)/a] − cos2(πx/a)
(7)

σ(x) = κ

2π
V (x). (8)

At κ → ∞, we immediately come back to the classical-limit equation (2). The quantum
corrections are given by theκ-dependent terms in equation (7). The Fourier componentsV (r)

of the potential (7) can be calculated analytically. ForV (r) we find

V (r) = 2πξ

κa

exp(−2π1|r|/a)

1 + 2π |r|/κa
. (9)

We see from equation (9) that for a short-period SL, the quantum corrections may be
rather important: the parameter 2π/κa = πa∗

0/a for GaAs becomes unity for a period
a ∼ 300 Å. The depth of modulation of the lateral potential depends on the spacer thickness
1 exponentially; a rather simple estimate can be made in the nearly classical limitκa � 1:

Vmin

Vmax
= tanh2

(
π1

a

)
. (10)

3. Dynamic conductivity of the 1D SL

In this section, expressions for components of the dynamic magnetoconductivity tensor
σ̂ (ω, B) of a 1D lateral superlattice are derived†. This tensor describes the response of a
system placed in an external magnetic fieldB to an alternating electric field of frequency
ω. Our derivation generalizes the approach developed in [7] to the case of an external
alternating electric field and an arbitrary periodic potential. It is based on a solution of the
classical Boltzmann kinetic equation for 2D electrons subject to a laterally modulating potential
V (x), a constant uniform magnetic fieldB (directed along thez-axis) and a microwave field
E(t) = Re(Eωe−iωt ) (Eω is the complex amplitude of the electromagnetic field).

The linearized kinetic equation for a degenerate (T = 0 K) electron system reads

L̂ωχ ≡
[
v(x) cosϕ

∂

∂x
+

(
∂v

∂x
sinϕ + ωc

)
∂χ

∂ϕ
+

1

τ

(
1 −

∫ 2π

0

dϕ

2π

)
− iω

]
χω

= − eEωuv(x). (11)

Hereχ(x, ϕ) is a nonequilibrium correction linear inEω to the distribution function at the
point x with the direction of the velocity (momentum)u (u = (cosϕ, sinϕ)), v(x) =
vF

√
1 + eV (x)/EF is the magnitude of the electron velocity (vF is the Fermi velocity),

ωc = eB/m∗c is the cyclotron frequency andτ is the relaxation time (as in [7],τ is assumed
to be constant). The complex amplitude of the current is expressed in terms ofχ as

jω = −eN〈χuv〉 (12)

† Strictly speaking, the lateral potential depends on the magnetic field through theB-dependence of the screening
(see, e.g., [12]). However, this dependence becomes important only for sufficiently strong fields when the density of
states differs essentially from that of free-electron gas. The effects that we consider here occur in the regime of much
weaker fields.
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whereN = m/πh̄2 is the density of states of an unmodulated 2D electron gas. The angular
brackets mean averaging overx andϕ:

〈· · ·〉 =
∫ 2π

0

dϕ

2π

∫
dx

a
(· · ·). (13)

Now we introduce (instead ofχω) a new unknown functionFω as follows:

χω = −e
∑
i,j

[
2v(x)ui

v2
F

+ Fωi

]
σ

(0)
i,j (ω, B)

Ne2
Eωj (14)

whereσ
(0)
i,j (ω, B) = σ0ηdi,j /(η

2 + γ 2) is the unperturbed (i.e. atV (x) = 0) dynamic (Drude-
type) magnetoconductivity tensor of the 2D system,σ0 = Nse

2τ/m∗ is the static conductivity
of the 2D electron gas,Ns = NEF is the surface electron density,dxx = dyy = 1, dyx =
−dxy = γ /η, γ = ωcτ andη = 1 − iωτ .

The first term in equation (14) givesσ (0)
i,j (ω, B). The second leads to a correction assoc-

iated withV (x):

1σi,j (ω, B) =
∑

k

〈uivFωk〉σ (0)
k,j . (15)

It is evident thatFωi = Fωδxi for a 1D lateral SL. Substituting (14) into (11) we obtain the
following equation forFω:

L̂ωFω = − e

EF

∂V (x)

∂x
. (16)

Using equation (11), the expression for1σi,j can be readily transformed into

1σi,j = 1

Nse
σ

(0)
ix σ

(0)
xj

〈
F

∂V

∂x

〉
. (17)

We assume the lateral potentialV (x) to be weak. This allows solving equation (16)
perturbatively, and, to first order inV , the functionF is determined by

L̂(0)
ω Fω = − e

EF

∂V (x)

∂x
(18)

with L̂(0)
ω = L̂ω

∣∣
V =0. From equation (18) we can find the following equation for spatial Fourier

components of the functionF(x, ϕ) (F = ∑∞
r=−∞ F (r) exp(irqx), q = 2π/a):

irql cosϕF (r) + ωc
∂F (r)

∂ϕ
+ ηF (r) − F (r) = − irqeτV (r)

EF
(19)

where the operation(· · ·) means averaging overϕ, andl = vFτ is the free path length. Solving
equation (19), we have

F (r) = − irqleV (r)

vFEF

S(rqvF/ωc)

1 − S(rqvF/ωc)
(20)

S(z) = η

∞∑
n=−∞

J 2
n (z)

n2γ 2 + η2
. (21)

HereJn(z) are Bessel functions. Now we substitute (20) into (17) and come finally to

σi,j (ω, B) = σ0η

η2 + γ 2

{
di,j − ηdixdxj q

2l2

2(η2 + γ 2)

∞∑
r=−∞

r2 |eV (r)|2
E2

F

S(rqvF/ωc)

1 − S(rqvF/ωc)

}
. (22)
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Using equation (22), we can easily verify that atω = 0 the expression forρi,j (ρ̂ = σ̂−1(0, B)

is the static magnetoresistivity) reduces to the result obtained in [7]. AtB = 0, equation (22)
can be somewhat simplified:

σi,j (ω) = σ0

{
1

η
δi,j − q2l2

2η2

∞∑
r=−∞

r2 |eV (r)|2
E2

F

C(rql)

1 − C(rql)
δixδjx

}
(23)

where

C(t) = 1/
√

η2 + t2.

4. Magnetoreflectance and the Faraday effect

Let us consider the manifestation of the lateral modulation of the 2D electron gas in reflection
from the system under discussion. We solve the electrodynamic problem in which the 2D
electron system with a spacer is modelled by aδ-like layer on a semi-infinite dielectric substrate
with refractive indexn. The fields are subject to corresponding boundary conditions and we
can easily arrive at formulae for the reflectanceR, Faraday rotation angleφ and ellipticityδ

in terms of the components of the dynamic conductivity tensor. For normal incidence of the
wave polarized along thex-axis we have

R‖ = |(n + 1 +6yy)(1 − n + 6xx) − 62
yx |2 + 4|6yx |2

|(n + 1 +6xx)(n + 1 +6yy) + 62
yx |2

(24)

|φ‖| = 2

∣∣∣∣∣Re

(
6yx

(n + 1 +6yy)(1 − n − 6xx) − 62
yx

)∣∣∣∣∣ (25)

δ‖ = 2 Im

(
6yx

(n + 1 +6yy)(1 − n − 6xx) − 62
yx

)
. (26)

Here we introduced the notation6i,j = 4πσi,j /c. In the case of an incident wave polarized
along they-axis, the expressions forR⊥ andφ⊥ can be obtained from (24) and (24) by making
the interchangex ↔ y.

The results of numerical calculations ofR andφ are shown in figures 2–5. The calculations
were performed using the following parameters:

µ = 5 × 104 cm2 V−1 s−1 (τ = 1.9 ps)

m∗ = 0.067m0

Ns = 4 × 1011 cm−2 (EF = 14.29 meV, vF = 2.74× 107 cm s−1)

a∗
0 = 10.12 nm

a = 32 nm

1 = 75 Å

ξ = 2 × 105 electrons cm−1

n = 3.58.

1R‖ and 1R⊥ (1R = R − R(0) is the lateral correction to the reflectanceR(0) of an
unmodulated electron gas) are plotted atB = 0 as functions of frequencyω in figure 2. For ay-
polarized incident wave we have the conventional monotonic Drude behaviourR⊥ ≡ R(0)(ω)

(1R⊥ is negligibly small), but for thex-polarized case the effect of the lateral SL results in a
1R‖(ω) curve with a maximum atωτ ∼ 1.
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Figure 2. The frequency dependence of the reflectance atB = 0. In this and the following figures,
full and broken curves correspond to1R‖ (1R⊥) and1R = R − R(0), respectively.

1 2 3 4 5

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010
9 8 7 6
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Figure 3. The magnetic field dependence of1R(B) for ωτ = 0.4. Ticks indicate extremum
positions of Weiss oscillations in accordance with the relation 2l/a = (NW − 1/4)γ , NW =
1, 2, 3, . . ..

Figures 3–5 demonstrate the magnetic field dependence of the reflection coefficients for
three different frequencies. The curves in figure 3 (ωτ � 1) show oscillatory behaviour. The
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Figure 4. The magnetoreflectance (as in figure 3) forωτ = 4. Full ticks indicate the positions of
Weiss oscillations; broken ticks correspond to CR harmonics (ωcNc = ω, Nc = 1, 2, . . .).
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Figure 5. Reflectance versusB for ωτ = 40. Full ticks indicate the positions of dynamic Weiss
oscillations following from (27); broken ticks are as in figure 4.

positions ofR‖(B)maxima (and, correspondingly,R⊥(B)) minima) coincide with the positions
of static-magnetoresistivityρxx(B) minima in Weiss oscillations. At high frequencies,
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1 � ωτ � ωcrτ , whereωcr = 2πvF/a (for the chosen parameters,ωcrτ = 72.4), we
have beats (figure 4): the envelope function associated with the cyclotron resonance (CR) and
its harmonics modulates the Weiss oscillations.

Figure 5 plotsR(B) for ωτ = 40 (i.e., atω . ωc). At the given frequency the CR
harmonics are modulated by the envelope function with minima obeying the relation

2
vF

a
8

(
ω

ωcr

)
= ωc

(
NdW − 1

4

)
(27)

where8(x) = √
1 − x2−x arctan(1/x2 − 1), NdW = 1, 2, . . .. Here we have a manifestation

of the so-called dynamic Weiss oscillations. The possibility of observing of Weiss-type
oscillations in a dynamic regime was predicted in [9]. Atω > ωcr, only CR harmonics
with an exponential envelope function are left (no Weiss oscillations occur).

Similar oscillatory behaviour due to the periodic lateral potential can also be observed in
other magneto-optical quantities, such as the transmittance and Faraday rotation angle. As
an example, figure 6 shows theB-dependence of the Faraday rotation angle and ellipticity in
a reflected electromagnetic wave. On the scale adopted, the results for the two polarizations
coincide very nicely.

1 2 3 4 5
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0.00
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0.04

0.06

0.08

0.10

∆δ

∆φ
, ∆

δ

ω τc

∆φ

Figure 6. The magnetic field dependence of the Faraday rotation angle1φ and ellipticity1δ for
ωτ = 4.

In conclusion, we report an exact analytical solution of the Thomas–Fermi electrostatic
problem for a 2D electron gas in a 1D lateral superlattice. The manifestations of the SL
potential in the magnetoreflectance and Faraday effect are considered. In both cases the
oscillatory behaviour of the observable values is established.
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